Abstract

In situ attenuated total reflectance Fourier transform infrared spectroscopy was utilized to study the interface evolution during the atomic layer deposition (ALD) of HfO2 on GaAs surfaces using of tetrakis (dimethylamino) hafnium and H2O. The experiments were performed on chemical oxide and hydrogen fluoride etched GaAs(100) starting surfaces. For the deposition of HfO2 on chemical oxide GaAs surfaces at 275 °C, which corresponds to the optimal ALD process temperature, continuous arsenic oxide removal was observed for the first 20 ALD cycles. The oxide removal was more pronounced at the initial 1-2 cycles but nonetheless persisted, at a reduced rate, up to the 20th cycle. The substrate temperature was confirmed to affect the arsenic oxide removal; the rate was significant at temperatures above 250 °C while negligible below 200 °C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.