Abstract

Our in situ high pressure high temperature experiments in multi-anvil assemblies unambiguously evidence the stability of bixbyite-type c-In2O3 at 6 GPa from room temperature to ca. 600°C. At 5.5 GPa and ca. 1100°C, c-In2O3 reacts with free carbon from the amorphous Si‒B‒C‒N capsule being reduced to metallic indium. The material recovered from the ex situ multi-anvil experiment at 6 GPa and 1100°C using the Mo capsule is inhomogeneous, thereby its phase composition depends on the specimen position from the furnace midline that in turn is characterized by the inhomogeneous temperatures. In the midpoint of the furnace, at the highest temperature point, c-In2O3 completely transforms into a corundum-type rh-In2O3 polymorph that is recovered under ambient conditions, as confirmed by X-ray powder and electron diffraction and Raman spectroscopy. Transmission electron microscopic characterization indicates the growth of single crystals of corundum-type rh-In2O3 with an average crystal size of ∼3 μm in the specimen part away from the furnace midline. The automated electron diffraction tomography analysis and X-ray powder-diffraction point out at the possible formation of orthorhombic In2O3 polymorphs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.