Abstract

We demonstrated that the ball-milled slag-SiC mixture is an effective catalyst to grow pyrrolic nitrogen-doped multiwall carbon nanotubes (N-MWCNTs) by aerosol assisted chemical vapor deposition (AACVD) method. N-MWCNTs synthesized at 800 °C, 850 °C and 900 °C were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, x-ray powder diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). TEM characterizations revealed the presence of a bamboo-like structure, a typical feature of nitrogen-doped carbon nanotubes. The presence of nitrogen was confirmed by the N1s XPS spectrum. Furthermore, a deconvolution of the N1s spectra revealed the presence of N-pyrrolic defects. This nitrogen functionality is investigated concerning the presence of silicon carbide material. Giant nanotubes with large diameters were obtained when SiC was added to the slag to be used as a substrate for N-MWCNTs synthesis. From Raman spectroscopy, the appearance of the D-band was observed, indicating the presence of topological defects that were also observed by TEM. XRD and TEM characterizations demonstrated the presence of Fe3C and α-Fe nanoparticles. The N-MWCNTs fabricated here could be used into (electro)catalytic applications or for reinforcing ceramic nanomaterial or polymers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.