Abstract

In this study, we reported the in-situ fabrication of a series of Fe2O3/TiO2 monolithic catalysts on flexible Ti mesh via plasma electrolytic oxidation process, hydrothermal reaction and chemical bath deposition (CBD) method. The morphology tailoring of Fe2O3 nanostructures finds that Fe2O3 nanosheets supported on TiO2 exhibit superior catalytic performance with a complete oxidation of CO at 260 °C. The catalytic stability test indicates that the in-situ grown Fe2O3/TiO2 catalysts own outstanding performance for continuous CO oxidation due to the strong substrate adhesion without mass loss. The microstructures and interfaces of Fe2O3/TiO2 catalysts are well studied using series of characterization techniques. The in-situ preparation strategy of metal oxide catalysts in this work will open up more opportunities for the rational design of variety of monolithic catalysts used for CO oxidation, de-NOx, three-way catalysis and other related application in industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call