Abstract

The current work reveals notable increase in field emission and photoluminescence characteristics of amorphous carbon nanotubes after forming its composite with In-Situ grown zinc sulfide (ZnS) nanoparticles. An easy chemical technique was employed to synthesize amorphous carbon nanotubes (ACNTs) and then ZnS nanoparticles were grown on them through an In-Situ solvothermal process. The morphology of the ZnS-ACNTs hybrid material was investigated through scanning electron microscope. Photoluminescence and field emission studies of the material were carried out as well in order to realize the applications. Substantial increase in photoluminescence intensity was found for ZnS-ACNTs hybrid material in comparison with pure amorphous carbon nanotubes, the hybrid also turned out as a better field-emitter than pure amorphous carbon nanotubes. Turnon field for ZnS-ACNTs composite decreased to 6 Vμm-1 which was 8 Vμm-1 in case of pure amorphous carbon nanotubes. A simulation analysis following finite element modelling method was carried out which ensured the improvement as field emitter for amorphous carbon nanotubes after ZnS nanoparticles were grown on them. Altogether the hybrid material proved to be a potential candidate for luminescent and cold cathode applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call