Abstract

An in situ solid state grafting reaction between epoxidized natural rubber (ENR) and silica was performed in a Haake internal mixer. Resulting ENR‐grafted silica was characterized by Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) measurements. Based on these results, it was concluded the silanol groups (Si‐OH) of silica caused the ring opening of ENR oxirane rings so that ENR was grafted onto the silica surface. Transmission electron microscopy (TEM) photographs showed ENR‐grafted silica had better dispersibility and smaller aggregates compared with the original silica. Dynamical mechanical analysis (DMA) of vulcanized rubber compounds contained ENR‐grafted silica showed the glass transition temperature (T g) of grafted ENR molecules shifted to higher temperature, from −3°C to 20°C, indicating the mobility of ENR was greatly restricted. As a result, the compounds containing ENR‐grafted silica have higher hysteresis, and can be applied in a much wider field, such as damping materials, tires of racing cars, and so on.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call