Abstract
Antibiotics are widely used in clinical medicine. As an important member, vancomycin often plays an irreplaceable role in some serious infections, but its use still lacks suitable carriers and effective formulations. In order to find a vancomycin carrier with potential for clinical application, a new class of oxidized salecan/gelatin based injectable hydrogels are constructed through dynamic covalent Schiff base reaction. The sodium periodate oxidized salecan (OS) precursor was synthesized, and then the gelatin/oxidized salecan (GS) hydrogels are formed by blending gelatin and OS buffer solutions without any additives under physiological condition. The chemical structure, as well as internal morphologies, mechanical properties, In vitro enzymatic degradation profile of hydrogels are investigated with proton nuclear magnetic resonance (1H NMR), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), compression test and rheological experiments. The resulted hydrogels exhibit excellent antibacterial ability and variable characteristics. Moreover, the hydrogels display ideal drug release kinetics and mechanisms, and are applied successfully to the controlled release of vancomycin. Importantly, benefitting from the excellent biocompatibility and the reversibly crosslinked networks, GS hydrogels can function as suitable three dimensional (3D) extracellular matrix for HeLa cells, leading to the encapsulated cells maintaining a high viability and proliferative capacity. Therefore, the injectable GS hydrogels demonstrated attractive properties for future application in pharmaceutics and tissue engineering.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have