Abstract
Recent developments on in situ formed multifilamentary composites are reviewed and their superconducting and mechanical properties discussed in terms of the underlying physical mechanisms. The evidence is presented for a strong size dependence of the strengthening, flux-pinning and coupling mechanisms and, in turn, the composite normal-state and superconducting transport properties. The importance of the composite microstructure and micro-geometry is illustrated with data on Cu-Nb, Cu-Nb <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</inf> Sn and Cu-V <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</inf> Ga conductors. In particular densely spaced interfaces are shown to interact effectively with both matrix crystal dislocations and flux-line lattice, resulting in strongly anisotropic material properties. The importance of the proximity-effect coupling is discussed for Nb <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</inf> Sn-based composites below the microstructural percolation threshold where the self-field critical current densities (normalized to the filament volume fraction) reached values of 1.4 × 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">7</sup> A/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> . At high fields, the performance of Cu-V <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</inf> Ga in situ composites is significantly better than that of Cu-Nb <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</inf> Sn conductors, with typical normalized values of J <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c</inf> of 1.4 × 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">7</sup> A/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> at 18 Tesla and 4.2 K. Possible use of Cu-Nb in situ composites in high-field magnet design is also discussed in view of their remarkable strength (up to 2.9 GPa at 77 K) and high normal-state conductivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.