Abstract
For the efficient surface plasmon resonance (SPR)-based DNA assay researching, signal amplification tactics were absolutely necessary. In this work, a sensitive SPR-DNA sensor was developed by employing in situ synthesis of copper nanoparticles (CuNPs) templated by poly-T sequences DNA from terminal deoxynucleotidyl transferase (TdT)-mediated extension, and synergistically with nano-effect deposition as the mass relay. The objective of this strategy was manifold: firstly, tDNA hybridized with the optimal designed probes to active the TdT-mediated DNA extension onto the surface of SPR chip, resulted a long poly-T sequences ssDNA chain in dsDNA terminal onto surface of gold chip and characterized by SPR signal amplitudes. Secondly, copper ion (Cu2+) adsorbed into the skeleton of poly-T sequences DNA, with the aid of ascorbic acid (VC) to achieve the Cu2+ reduction, copper nanostructures (CuNPs) was synchronously generated onto the single nucleotide chain anchoring in dsDNA derivatives and the formation was featured by transmission electron micrographs (TEM) and electrochemistry. Lastly, dsDNA-complexed CuNPs (CuNPs@dsDNA) triggered the final signal amplification via real-time conversion of the additive catechol violet (CV) into oligomer or chelation precipitation by CuNPs-tagged reporters. With the proposed setups, a precise and replicable DNA sensing platform for specific target oligo was obtained with a detection limit down to 3.21 femtomolar, demonstrating a beneficial overlapping exploitation of nanomaterials and biochemical reaction as unique SPR infrastructure. Such triple-amplification strategic setups, the possibility of various methods abutment and biocompatibility weight reactor was amassed and adapted to more biological detection field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.