Abstract
Hydrogels have long been used for encapsulating stem cell-derived conditioned mediums to achieve skin regeneration after wounding. However, inappropriate mechanical strength, low adhesion and low elasticity limit their clinical application. To address these challenges, we engineered a hyaluronic acid-based hydrogel grafted with methacrylic anhydride and N-(2-aminoethyl)-4-[4-(hydroxymethyl)-2-methoxy-5-nitrophenoxy]-butanamide (NB) groups to encapsulate a lyophilized amnion-derived conditioned medium (AM-CM). This hydrogel can photopolymerize in situ within 3 s by photo-initiated free-radical crosslinking between methacrylate moieties. Meanwhile, the formed o-nitrosobenzaldehyde groups by photo-irradiation could covalently bond with the amino groups of tissue surface, which allowed strong tissue adhesion. Furthermore, the hydrogel possessed excellent mechanical properties, high elasticity, favorable biocompatibility and prolonged AM-CM release. Our further vitro and in vivo studies showed that the hydrogel significantly accelerated diabetic wound healing by regulating macrophage polarization and promoting angiogenesis. The engineered hydrogel with AM-CM release has high potential to treat chronic wounds in clinics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.