Abstract
A lightweight, heterogeneous, three-dimensional network-structured composite has been meticulously developed with the specific goal of optimizing impedance matching and elevating electromagnetic wave absorption properties. SiC nanowires-carbon composites were synthesized through a novel process involving combined carbothermal reduction and chemical vapor deposition, utilizing loofah sponge as the foundational material. Accessible and cost-effective organosilane waste was applied as the silicon source. The resulting composites manifest exceptional electromagnetic wave absorption performance with a minimum reflection loss of − 46.34 dB and a wide effective bandwidth of 3.84 GHz at a thin thickness of 1.9 mm. Superior electromagnetic wave absorption is attributed to synergistic interplay of multiple interfacial polarizations, dipole polarization, conductive losses, and multiple reflections and scattering. This work presents an innovative pathway toward fabricating highly efficient electromagnetic wave-absorbing materials while effectively repurposing recycled waste.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.