Abstract

Although microstructure optimization is an effective strategy to improve and regulate electromagnetic wave (EMW) absorption properties, preparing microwave absorbents with enhanced EMW absorbing performance and tuned absorption band by a simple method remains challenging. Herein, ZnIn2S4/reduced graphene oxide (rGO) composites with flower-like and cloud-like morphologies were fabricated by a convenient hydrothermal method. The ZnIn2S4/rGO composites with different morphologies realize efficient EMW absorption and tunable absorption bands, covering a wide frequency range. The flower-like structure has an optimal reflection loss (RL) of up to -49.2 dB with a maximum effective absorption bandwidth (EAB) of 5.7 GHz, and its main absorption peaks are concentrated in the C and Ku bands. The minimal RL of the cloud-like structure can reach -36.3 dB, and the absorption peak shifts to the junction of X and Ku bands. The distinguished EMW absorption capacity originates from the uniquely optimized microstructure, complementary effect of ZnIn2S4 and rGO in dielectric constant, and synergy of various loss mechanisms, such as interfacial polarization, dipole polarization, conductive loss, and multiple reflections. This study proposes a guide for the structural optimization of an ideal EMW absorber to achieve efficient and tunable EMW absorption performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call