Abstract

There is a growing need for new techniques to synthesize metallic copper nanoparticles due to their remarkable use in many advanced technologies. Herein, a novel method to synthesize stable and nonagglomerated zero-valent copper nanoparticles (ZVCNPs) via the in situ formation of reduced graphene oxide (rGO) during the electrospinning process in the presence of polyvinylpyrrolidone as a carbon source is presented. X-ray diffraction, Raman spectroscopy, electron paramagnetic resonance, transmission electron microscopy, and X-ray photoelectron spectroscopy techniques were used to investigate the morphology, structure, and composition of the fabricated materials. The synthesized ZVCNPs were coupled with TiO2 nanofibers and rGO to form an efficient photoactive material to photocatalytically produce hydrogen via water splitting, resulting in 344% increase in the hydrogen yield compared to that of TiO2 nanofibers. The density functional theory (DFT) calculations showed that the ZVCNPs enhance the charge transfe...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.