Abstract

• Layered double hydroxides crystallite were in situ fabricated on inner wall of capillary. • Thickness and morphology of LDH film on inner-wall of capillary was finely controlled. • Au NPs were immobilized on layered double hydroxides film. • Au/LDH film showed good catalytic activity in carbonylation of glycerol with urea. • The productivity of glycerol carbonate reached 3.78 g•h −1 •g −1 on Au/LDH catalytic film. Microreactor is capable of intensifying catalytic reaction processes. The fabricating of catalytic film inside microchannels for catalytic reaction remains a challenge. Here we report a facile method for in situ fabrication of layered double hydroxide (LDH) film immobilizing gold nanoparticles in capillary microreactor. Through adjusting the reaction condition of in situ hydrothermal crystallization process and flow deposition process inside microchannel, film thickness, film morphology and Au loading of Au/LDH coating can be finely controlled. Such Au/LDH film inside microchannel exhibited good performance in catalytic carbonylation of glycerol with urea. The yield of glycerol carbonate reached 31.9% at flow rate of 10 µl/min, residence time of 6.62 min and reaction temperature of 413 K under atmospheric pressure. The maximum productivity of 3.78 g∙h −1 ⋅g −1 was obtained at flow rate of 40 µl/min and residence time of 1.65 min under same reaction temperature and pressure. Continuously running the microreactor for 30 h proved the high stability of this catalytic film inside microchannels. This approach could be extended to fabricate other diatomic and triatomic metal LDH films immobilizing metal nanoparticles inside microchannels for heterogeneous catalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.