Abstract

Composite solid-state electrolytes (CSEs) exhibit the high ionic conductivity of ceramic electrolytes and the facile processing and good flexibility of polymer electrolytes, representing the most promising class of solid-state electrolytes for the industrialization of lithium batteries. Nevertheless, CSEs continue encountering substantial interfacial resistance, which impedes their practical deployment. In response to these issues, a Li6.4La3Zr1.4Ta0.6O12/poly(vinylidene fluoride) (LLZTO/PVDF) solid electrolyte membranes with a thickness of 25 μm were prepared by the doctor blade method. In situ polymerization of 1,3-dioxolane (DOL) at the electrolyte–electrode interface was initiated by lithium hexafluorophosphate (LiPF6) and lithium difluoro(oxalate)borate (LiDFOB) dual-salts to produce poly(1,3-dioxolane) (PDOL). The presence of PDOL in LLZTO/PVDF@PDOL results in a high room temperature ionic conductivity of 3.578 mS cm−1. Moreover, the Li||LLZTO/PVDF@PDOL||LiFePO4(LFP) battery exhibits a discharge-specific capacity of 143 mAh g−1 and capacity retention of 81.7 % after 1000 cycles at 2 C, and the pouch cell with LLZTO/PVDF@PDOL achieved a high energy density of 190 Wh kg−1. The findings of this study may facilitate the industrial application of CSEs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.