Abstract
In this contribution, we report the development of in situ electrochemical cells based on proton exchange membranes suitable for studying interfacial structural dynamics of energy materials under operation by near ambient pressure X-ray photoelectron spectroscopy. We will present both the first design of a batch-type two-electrode cell prototype and the improvements attained with a continuous flow three-electrode cell. Examples of both sputtered metal films and carbon-supported metal nanostructures are included demonstrating the high flexibility of the cells to study energy materials. Our immediate focus was on the study of the oxygen evolution reaction, however, the methods described herein can be broadly applied to reactions relevant in energy conversion and storage devices.
Highlights
Renewable energy storage and conversion technologies rely on the availability of materials able to catalyse, electrochemically or photo-electrochemically activated, hydrogenation and dehydrogenation reactions of small molecules at potentials as close as possible to the corresponding thermodynamic potential [1, 2]
In our second case study using the two-electrode cell, we show that the presented cell is highly flexible and can be adapted to study electrocatalysts based on metal nanostructures supported on carbon
In contrast to the electrodeposited IrOx on carbon paper investigated with the two-electrode cell, in which Ir was already initially oxidised, this study focused on the early stages of Ir oxidation during the oxygen evolution reaction (OER) and the oxygen ligands forming on a metallic iridium substrate
Summary
Renewable energy storage and conversion technologies rely on the availability of materials able to catalyse, electrochemically or photo-electrochemically activated, hydrogenation and dehydrogenation reactions of small molecules at potentials as close as possible to the corresponding thermodynamic potential [1, 2]. Most of the commonly investigated redox systems are inspired by the energy cycles occurring in nature: (1) the oxygen redox cycle (O2/H2O), (2) the nitrogen redox cycle (N2/NH3), and (3) the carbon redox cycle (CO2/ CxHyOz). Whilst literature on these topics is flourishing [1,2,3], no satisfactory materials have been found to provide the decisive boost for these technologies. A thorough understanding of the underlying mechanisms is generally acknowledged to guide towards the synthesis of improved materials In this respect, for electrochemical processes the understanding of the restructuring and compositional change of the electrode surface upon polarization, activation, and deactivation is especially important. This knowledge can be attained via surface-sensitive in situ spectroscopic techniques that investigate the electronic structure at surfaces and interfaces
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.