Abstract
In-situ formation of cross-linked carbon nanotubes network reinforced the refractory matrix and helps to improve the mechanical properties at elevated temperature. In this paper, the effect of modified phenol-formaldehyde (PF) resin binder on the various mechanical properties of alumina–magnesia–carbon (AMC) refractories was investigated. Initially, PF resin was modified by adding a different proportion of nickel catalyst. The AMC specimens (with the 7% carbon) were prepared by using 5% of modified PF resin. The pressed samples were cured at 180 °C for 24 h and characterized by XRD, Raman spectroscopy, and FE-SEM. The characterisation shows that, in-situ formation of graphitic carbon and carbon nanotubes network in the specimens due to modification of PF resin. In-situ formation of phases leads to enhancement of density and mechanical properties of refractory at elevated temperature due to the reinforcing effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.