Abstract

Quantitative studies of coral reefs are challenged by the three-dimensional hard structure of reefs and the high spatial variability and temporal dynamics of their metabolism. We used the non-invasive eddy correlation technique to examine respiration and photosynthesis rates, through O2 fluxes, from reef crests and reef slopes in the Florida Keys, USA. We assessed how the photosynthesis and respiration of different reef habitats is controlled by light and hydrodynamics. Numerous fluxes (over a 0.25 h period) were as high as 4500 mmol O2 m−2 d−1, which can only be explained by efficient light utilization by the phototrophic community and the complex canopy structure of the reef, having a many-fold larger surface area than its horizontal projection. Over diel cycles, the reef crest was net autotrophic, whereas on the reef slope oxygen production and respiration were balanced. The autotrophic nature of the shallow reef crests implies that the export of organics is an important source of primary production for the larger area. Net oxygen production on the reef crest was proportional to the light intensity, up to 1750 µmol photons m−2 s−1 and decreased thereafter as respiration was stimulated by high current velocities coincident with peak light levels. Nighttime respiration rates were also stimulated by the current velocity, through enhanced ventilation of the porous framework of the reef. Respiration rates were the highest directly after sunset, and then decreased during the night suggesting that highly labile photosynthates produced during the day fueled early-night respiration. The reef framework was also important to the acquisition of nutrients as the ambient nitrogen stock in the water had sufficient capacity to support these high production rates across the entire reef width. These direct measurements of complex reefs systems yielded high metabolic rates and dynamics that can only be determined through in situ, high temporal resolution measurements.

Highlights

  • Coral reefs are among the most diverse habitats in the world, due to their high productivity and complex architecture that can shelter a wide diversity of organisms

  • The total surface area of reefs can be 15 times the planar reef area [5]. This surface area applies to the area available for photosynthesizers, and to the reef framework which is the total of the pore spaces, cavities, and underlying sands that are important to the capture and transformation of nutrients in reef systems [6], [7], [8]

  • Reef Metabolism The transect analysis revealed that the reef crest (RC) sites were dominated by gorgonians and soft corals (51%), algae (24%), and sand, pavement, and rubble (20%) where the percentages are the percent cover of the reef surface

Read more

Summary

Introduction

Coral reefs are among the most diverse habitats in the world, due to their high productivity and complex architecture that can shelter a wide diversity of organisms. The total surface area of reefs can be 15 times the planar reef area [5] This surface area applies to the area available for photosynthesizers, and to the reef framework which is the total of the pore spaces, cavities, and underlying sands that are important to the capture and transformation of nutrients in reef systems [6], [7], [8]. This high surface area of reefs, when examined in situ on an ecosystem scale, has the potential to produce much larger exchanges of solutes and organics than studies that give exchange rates that are normalized to organism surface area

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.