Abstract

Hollow porous carbon nanospheres (HPCS) are ideal scaffolds for phase change materials in thermal energy storage. However, their synthesis traditionally relies on template-based routes, involving tedious procedures and high costs. This study presents a facile method for preparing HPCS through one-step carbonization of phenolic resin using CuCl2 as the activation agent. This mild activation agent not only helps create a rich porous structure, but also maintains the hollow spherical architecture of the polymer precursor. More importantly, copper ions are reduced to copper nanoparticles during the carbonization process and are in-situ loaded into porous carbon, enhancing the thermal conductivity of the scaffold. After incorporating paraffin, the resulting composite exhibits a high phase change enthalpy of 104.4 J g−1, improved thermal conductivity of 0.95 W m−1 K−1, and excellent thermal cycling stability (100.5 J g−1 after 50 heating-cooling cycles), indicating significant potential for thermal energy storage and management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call