Abstract
Accessible and superior electrocatalysts to overcome the sluggish oxygen evolution reaction (OER) are pivotal for sustainable and low-cost hydrogen production through electrocatalytic water splitting. The iron and nickel oxohydroxide complexes are regarded as the most promising OER electrocatalyst attributed to their inexpensive costs, easy preparation, and robust stability. In particular, the Fe-doped NiOOH is widely deemed to be superior constituents for OER in an alkaline environment. However, the facile construction of robust Fe-doped NiOOH electrocatalysts is still a great challenge. Herein, we report the facile construction of Fe-doped NiOOH on Ni(OH)2 hierarchical nanosheet arrays grown on nickel foam (FeNi@NiA) as efficient OER electrocatalysts through a facile in-situ electrochemical activation of FeNi-based Prussian blue analogues (PBA) derived from Ni(OH)2. The resultant FeNi@NiA heterostructure shows high intrinsic activity for OER due to the modulation of the overall electronic energy state and the electrical conductivity. Importantly, the electrochemical measurement revealed that FeNi@NiA exhibits a low overpotential of 240 mV at 10 mA/cm2 with a small Tafel slope of 62 mV dec-1 in 1.0 M KOH, outperforming the commercial RuO2 electrocatalysts for OER.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.