Abstract

The construction of heterojunction photocatalysts was considered to be an effective strategy to tackle refractory pollutants. However, most of the reported composites lacked precise control of their morphology, resulting in unsatisfactory catalytic activity. In this work, we successfully fabricated sulfur doped g-C3N4 hollow tubes (SCN) via molecular self-assembly, and then grew the Bi2O2CO3 nanoflakes (BOC) in situ parallel on the surface of SCN to construct 2D/1D interfacial phase. Within 30 min visible light irradiation, the robust BOC/SCN-3 heterostructure showed considerable improvement for tetracycline degradation (82.6%) compared with individual components. This enhanced photocatalytic performance derived from the synergistic effect of S doping and heterojunction interface contact. The tubular structure formed by S doping not only narrowed the bandgap and thus boosting the visible light harvesting of CN, but also promoted electrons to travel along the 1D longitudinal and radial directions. In addition, the built-in electric field between BOC and SCN effectively achieved the spatial separation of electron-hole pairs. Mechanism analysis revealed that the h+ and •O2− radicals played the dominating contribution in the photocatalytic process, and a possible Z-scheme mechanism was proposed. It was expected that such design route could provide a new perspective on hierarchical heterostructure for pollutant removal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.