Abstract

• CN/MgO heterostructure was prepared by thermal exfoliation followed by precipitation. • Rich N defects and O dopants boosted photo-activity of CN/MgO with high surface area. • A built-in electric field at the interface spatially separated electron-hole pairs. • CN/MgO degraded 99% CEES within 120 min under visible light and ambient conditions. • CN/MgO detoxified CEES with good selectivity to non-toxic sulfoxide in solution. Removing hazardous chemicals such as chemical warfare agents is crucial for the environment, defense, and public security. Herein, magnesium oxide-decorated carbon nitride photocatalysts (CN/MgO) were fabricated for detoxification of 2-chloroethyl ethyl sulfide (CEES) in solutions under the irradiation of a solar simulator. CN/MgO samples were prepared via thermal exfoliation followed by precipitation. The surface enhancements of as-prepared photocatalyst, such as high specific surface area, rich-nitrogen defects, and oxygen dopants, improved adsorption capacity, reaction active sites, and localized charge distribution. CN/MgO catalyst showed high performance of detoxification of CEES in solutions (99% of 200 parts per million volume (ppmv) hydroxylethyl ethyl sulfide, a hydrolysis product of CEES, within 120 min). In addition, the detoxification in chloroform solution was conducted to elucidate the hydrolysis effect in the solution phase. Density functional theory calculations revealed that a built-in electric field at the heterostructure interface could facilitate spatial separation of photo-excited electron-hole pairs. Scavenger tests proved that superoxide radicals contributed to good photo-oxidation reactivity. The reaction mechanism was suggested using the results with GC-MS, XPS, FTIR, and XRD. The as-prepared photocatalyst could function under ambient conditions without adding any base or acid. The detoxification exhibited good selectivity to transfer CEES to sulfoxide, avoiding over-oxidation to generate toxic sulfone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.