Abstract

A technique to characterize the native passivation layer (NPL) on pure lithium metal foils in a scanning electron microscope (SEM) is described in this paper. Lithium is a very reactive metal, and consequently, observing and quantifying its properties in a SEM is often compromised by rapid oxidation. In this work, a pure lithium energy-dispersive x-ray spectrum is obtained for the first time in a high vacuum SEM using a cold stage/cold trap with liquid nitrogen reservoir outside the SEM chamber. A nanomanipulator (OmniProbe 400) inside the microscope combined with x-ray microanalysis and windowless energy dispersive spectrometer is used to fully characterize the NPL of lithium metal and some of its alloys by a mechanical removal procedure. The results show that the native films of pure lithium and its alloys are composed of a thin (25 nm) outer layer that is carbon-rich and an inner layer containing a significant amount of oxygen. Differences in thickness between laminated and extruded samples are observed and vary depending on the alloy composition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call