Abstract

Coherent phonon dynamics in condensed-phase medium are responsible for important material properties including thermal and electrical conductivities. We report a structural dynamics technique, time-resolved surface third-harmonic generation (TRSTHG) spectroscopy, to capture transient phonon propagation near the surface of polycrystalline CaF2 and amorphous borosilicate (BK7) glass. Our approach time-resolves the background-free, high-sensitivity third harmonic generation (THG) signal in between the two crossing near-IR pulses. Pronounced intensity quantum beats reveal the impulsively excited low-frequency Raman mode evolution on the femtosecond to picosecond timescale. After amplified laser irradiation, danburite-crystal-like structure units form at the glass surface. This versatile TRSTHG setup paves the way to mechanistically study and design advanced thermoelectrics and photovoltaics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call