Abstract

When photosensitive azobenzene-containing polymer films are irradiated with light interference patterns, topographic variations in the film develop that follow the local distribution of the electric field vector. The exact correspondence of e.g., the vector orientation in relation to the presence of local topographic minima or maxima is in general difficult to determine. Here, we report on a systematic procedure how this can be accomplished. For this, we devise a new set-up combining an atomic force microscope and two-beam interferometry. With this set-up, it is possible to track the topography change in-situ, while at the same time changing polarization and phase of the impinging interference pattern. This is the first time that an absolute correspondence between the local distribution of electric field vectors and the local topography of the relief grating could be established exhaustively. Our setup does not require a complex mathematical post-processing and its simplicity renders it interesting for characterizing photosensitive polymer films in general.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.