Abstract

In this paper we report on the interaction between photosensitive azobenzene-containing polymer films and on top adsorbed graphene multilayers. The photosensitive polymer film changes its topography under irradiation with light interference patterns according to their polarization distribution. The multilayer graphene follows the deformation of the polymer film and stretches accordingly. Using confocal Raman microspectroscopy we can detect the appearance of additional peaks in the Raman spectrum of the photosensitive polymer film upon irradiation indicating a molecular interaction at the interface between the graphene multilayer and the polymer matrix. Multi-component analysis of the specific Raman bands shows that the interaction involves the graphene rings and the aromatic rings of the azobenzenes causing the strong adhesion between the two materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.