Abstract
Laser powder bed fusion is a metal additive manufacturing technique that has received significant scientific and industrial attention over the past decades. However, the quality and reproducibility of parts manufactured by this technique is still a problem. Overcoming this issue requires an understanding of multiple complex physical phenomena which occur simultaneously during the process. This work illustrates a powerful new technique which synchronizes high-speed x-ray imaging with high-speed infrared imaging to study laser powder bed fusion processes in real time. Using this technique, we demonstrate the simultaneous observation of multiple phenomena including three-dimensional melt pool visualization, vapor plume dynamics, spatter formation, thermal history, and point cooling rates. The paired observation of these dynamic phenomena is critical to understanding the fundamentals of laser powder bed fusion, and the overall impact of process parameters on print quality.
Submitted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have