Abstract
The formation of self-assembled monolayers (SAMs) of adsorbed cationic or anionic surfactant molecules on atomically flat H-terminated Si(111) surfaces in aqueous solutions was investigated by in situ AFM measurements, using octyl trimethylammonium chloride (C8TAC), dodecyl trimethylammonium chloride (C12TAC), octadecyl trimethylammonium chloride (C18TAC)) sodium dodecyl sulfate (STS), and sodium tetradecyl sulfate (SDS). The adsorbed surfactant layer with well-ordered molecular arrangement was formed when the Si(111) surface was in contact with 1.0x10(-4) M C18TAC, whereas a slightly roughened layer was formed for 1.0x10(-4) M C8TAC and C12TAC. On the other hand, the addition of alcohols to solutions of 1.0x10(-4) M C8TAC, C12TAC, or SDS improved the molecular arrangement in the adsorbed surfactant layer. Similarly, the addition of a salt, KCl, also improved the molecular arrangement for both the cationic and anionic surfactant layers. Moreover, the adsorbed surfactant layer with a well-ordered structure was formed in a solution of mixed cationic (C12TAC) and anionic (SDS) surfactants, though each surfactant alone did not form the well-ordered layer. These results were all explained by taking into account electrostatic repulsion between ionic head groups of adsorbed surfactant molecules as well as hydrophobic interaction between their alkyl chains, which increases with the increasing chain length, together with the increase in the hydrophobic interaction or the decrease in the electrostatic repulsion by incorporating alcohol molecules into the adsorbed surfactant layer, the decrease in the electrostatic repulsion by increasing the concentration of counterions, and the decrease in the electrostatic repulsion by alternate arrangement of cationic and anionic surfactant molecules. The present results have revealed various factors to form the well-ordered adsorbed surfactant layers on the H-Si(111) surface, which have a possibility of realizing the third generation surfaces with flexible structures and functions easily adaptable to circumstances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.