Abstract
Summary The high phase-transformation strain developed upon intercalation in the host particles of a composite battery electrode affects the polymeric binder network mechanically, deteriorating the electrode cycling performance. Here, electrochemical quartz crystal microbalance with dissipation monitoring (EQCM-D) is used to demonstrate a new strain-accommodation mechanism, in high-strain NaFePO 4 /PVdF electrodes, via relaxation of the binder network surrounding the intercalation particles. Complete mechanical degradation of the polymer network occurs during long-term cycling of NaFePO 4 electrodes in aqueous solutions (hard and tough behavior). In contrast, in aprotic solutions, a softened binder easily accommodates the high transformation strain, ensuring excellent electrode cycling performance (soft and tough behavior). Quantification of the high-frequency viscoelastic properties of an operating composite electrode linked to the binder's fracture toughness ensures fast and facile screening of the optimal polymeric binder/electrolyte solution combinations. This methodology should be extremely important for optimization of cycling performance of Li-Si anodes undergoing huge volume changes during cycling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.