Abstract

Oxygen evolution reactions (OER) are often the decisive step in determining the water electrolysis rate. The first row of transition metals and their derivatives, represented by Ni and Fe, have attracted much attention due to their excellent OER performance. Here, we develop a one-step strategy for preparing oxygen-evolving electrodes, in which the NiFeOOH-modified NiFe layered double hydroxide (NiFe-LDH) nanosheet is supported by nickel foam. At 100 mA·cm−2, the overpotential of NiFeOOH-NiFe-LDH was just 227 mV, and the duration times were over 200 h in 1 mol·L−1 KOH. Furthermore, the co-existence of LDH and hydroxyl oxides helps the oxygen evolution reaction. These results suggest the potential for this synthesis strategy to provide a low-cost, highly active OER electrocatalyst for industrial water splitting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.