Abstract

ABCG2 is a substantial member of the ABC transporter superfamily that plays a significant role in multidrug resistance in cancer. Until recently, the 3D structure of ABCG2 has not been resolved, which resulted in the limitation of developing potential ABCG2 inhibitors using structure-based drug discovery. Herein, eMolecules, ChEMBL, and ChEBI databases, containing >25 million compounds, were virtually screened against the ABCG2 transporter in homodimer form. Performance of AutoDock4.2.6 software to predict inhibitor-ABCG2 binding mode and affinity were validated on the basis of available experimental data. The explored databases were filtered based on docking scores. The most potent hits with binding affinities higher than that of experimental bound ligand (MZ29) were then selected and subjected to molecular mechanics minimization, followed by binding energy calculation using molecular mechanics-generalized Born surface area (MM-GBSA) approach. Furthermore, molecular dynamics simulations for 50 ns, followed by MM-GBSA binding energy calculations, were performed for the promising compounds, unveiling eight potential inhibitors with binding affinities <-55.8 kcal/mol. Structural and energetic analyses demonstrated the stability of the eight identified inhibitors over the 50 ns MD simulation. This research sheds light on the potentiality of the identified ABCG2 inhibitors as a therapeutic approach to overcome multidrug resistance cancer therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call