Abstract

Computational exploration of chemical space is crucial in modern cheminformatics research for accelerating the discovery of new biologically active compounds. In this study, we present a detailed analysis of the chemical library of potential glucocorticoid receptor (GR) ligands generated by the molecular generator, Molpher. To generate the targeted GR library and construct the classification models, structures from the ChEMBL database as well as from the internal IMG library, which was experimentally screened for biological activity in the primary luciferase reporter cell assay, were utilized. The composition of the targeted GR ligand library was compared with a reference library that randomly samples chemical space. A random forest model was used to determine the biological activity of ligands, incorporating its applicability domain using conformal prediction. It was demonstrated that the GR library is significantly enriched with GR ligands compared to the random library. Furthermore, a prospective analysis demonstrated that Molpher successfully designed compounds, which were subsequently experimentally confirmed to be active on the GR. A collection of 34 potential new GR ligands was also identified. Moreover, an important contribution of this study is the establishment of a comprehensive workflow for evaluating computationally generated ligands, particularly those with potential activity against targets that are challenging to dock.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.