Abstract

Background: Recently, we have shown that seven genes, namely GBP5, IRS2, KRT4, LINCOO707, MRPL55, RRS1 and SLC4A11, have prognostic power for the overall survival in ovarian cancer (OC). Methods: We present an analysis on the association of these genes with any phenotypes and mutations indicative of involvement in female cancers and predict the structural and functional consequences of those SNPS using in silico tools. Results: These seven genes present with 976 SNPs/mutations that are associated with human cancers, out of which 284 related to female cancers. We have then analysed the mutation impact on amino acid polarity, charge and water affinity, leading to the identification of 30 mutations in gynaecological cancers where amino acid (aa) changes lead to opposite polarity, charges and water affinity. Out of these 30 mutations identified, only a missense mutation (i.e., R831C/R804C in uterine corpus endometrial carcinomas, UCEC) was suggestive of structural damage on the SLC4A11 protein. Conclusions: We demonstrate that the R831C/R804C mutation is deleterious and the predicted ΔΔG values suggest that the mutation reduces the stability of the protein. Future in vitro studies should provide further insight into the role of this transporter protein in UCEC.

Highlights

  • We found that these 7 biomarkers represent 976 and 284 single-nucleotide polymorphisms (SNPs)/mutations associated with human cancers and female cancers, respectively

  • We provided a comprehensive overview of a wide repertoire of mutations of seven recently predicted biomarkers for ovarian cancer (OC) that can be acquired using a number of in silico tools

  • These 7 genes present with 976 SNPs/mutations that are associated with human cancers, out of which 284 are related to female cancers that include ovarian, cervical, endometrial cancer, as well as endometrioid and uterine carcinomas

Read more

Summary

Introduction

Methods: We present an analysis on the association of these genes with any phenotypes and mutations indicative of involvement in female cancers and predict the structural and functional consequences of those SNPS using in silico tools. We have analysed the mutation impact on amino acid polarity, charge and water affinity, leading to the identification of 30 mutations in gynaecological cancers where amino acid (aa) changes lead to opposite polarity, charges and water affinity. Out of these 30 mutations identified, only a missense mutation (i.e., R831C/R804C in uterine corpus endometrial carcinomas, UCEC).

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.