Abstract

Reversible electroporation is a suitable technique to aid the internalization of medicaments in cancer tissues without inducing permanent cellular damage, allowing the enhancement of cytotoxic effects without incurring in electric-driven necrotic or apoptotic processes by the presence of non-reversible aqueous pores. An adequate selection of electroporation parameters acquires relevance to reach these goals and avoid opposite effects. This work applies the Method of Fundamental Solutions (MFS) for drug transport simulations in electroporated cancer tissues, using a continuum tumor cord approach and considering both electro-permeabilization and vasoconstriction effects. The MFS algorithm is validated with published results, obtaining satisfactory accuracy and convergence. Then, MFS simulations are executed to study the influence of electric field magnitude [Formula: see text], number of electroporation treatments [Formula: see text], and electroporation time [Formula: see text] on three assessment parameters of electrochemotherapy: the internationalization efficacy accounting for the ability of the therapy to introduce moles into viable cells, cell-kill capacity indicating the faculty to reduce the survival fraction of cancer cells, and distribution uniformity specifying the competence to supply drug homogeneously through the whole tissue domain. According to numerical results, when [Formula: see text] is the reversibility threshold, a positive influence on the first two parameters is only possible once specific values of [Formula: see text] and [Formula: see text] have been exceeded; when [Formula: see text] is just the irreversibility threshold, any combination of [Formula: see text] and [Formula: see text] is beneficial. On the other hand, the drug distribution uniformity is always adversely affected by the application of electric pulses, being this more noticeable as [Formula: see text], [Formula: see text], and [Formula: see text] increases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call