Abstract
Zinc (Zn) has been proposed as an alternative metallic biodegradable material to support transient wound-healing processes. Once a Zn piece is implanted inside the organism the degradation will depend upon the physiological surrounding environment. This, by modulating the composition of the surface layers formed on Zn devices, will govern the subsequent interactions with the surrounding living cells (e.g. biocompatibility and/or antifungal behaviour). In silico simulation of an implanted Zn piece at bone-muscle interface or inside the bone yielded the preferential precipitation of simonkolleite or zincite, respectively. To study the impact of these surface layers in the in vitro behaviour of Zn biomaterials, simonkolleite and zincite where synthesised. The successful production of simonkolleite or zincite was confirmed by an extensive physicochemical characterization. An in vitro layer formed on the top of these surface layers revealed that simonkolleite was rather inert, while zincite yielded a complex matrix containing hydroxyapatite, an important bone analogue. When analysing the “anti-biofilm” activity simonkolleite stood out for its activity against an important pathogenic fungi involved in implant-device infections, Candida albicans. The possible physiological implications of these findings are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.