Abstract

Chemical substances not showing any importance in existence of biological systems and causing serious health hazards may be designated as Xenobiotic compound. Elimination or degradation of these unwanted substances is a major issue of concern for current time research. Process of biodegradation is a very important aspect of current research as discussed in current manuscript. Current study focuses on the detailed mining of data for the construction of microbial consortia for wide range of xenobiotics compounds. Intensive literature search was done for the construction of this library. Desired data was retrieved from NCBI in fasta format. Data was analysed through homology approaches by using BLAST. This homology based searched enriched with a great vision that not only bacterial population but many other cheap and potential sources are available for different xenobiotic degradation. Though it was focused that bacterial population covers a major part of biodegradation which is near about 90.6% but algae and fungi are also showing promising future in degradation of some important xenobiotic compounds. Analysis of data reveals that Pseudomonas putida has potential for degrading maximum compounds. Establishment of correlation through cluster analysis signifies that Pseudomonas putida, Aspergillus niger and Skeletonema costatum can have combined traits that can be used in finding out actual evolutionary relationship between these species. These findings may also givea new outcome in terms of much cheaper and eco-friendly source in the area of biodegradation of specified xenobiotic compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call