Abstract
Staphylococcus aureus (S. aureus), a versatile Gram-positive bacterium, is implicated in a spectrum of infections, and its resilience is often attributed to biofilm formation. This study investigates the effect of sub-inhibitory doses of oxacillin on biofilm formation by methicillin-resistant S. aureus (MRSA). Specifically, it examines how these doses influence biofilms' development, maturation, and dispersal. The biofilm's zenith reached 48 h of incubation, followed by a noteworthy decline at 96 h and a distinctive clearance zone around biofilm-positive cells exposed to oxacillin. Scanning electron micrographs unveiled an intriguing active biofilm dispersal mechanism, a rarity in this species. Among 180 isolates, only three carrying the elusive icaD gene exhibited this phenomenon. icaD gene was absent in their counterparts. Notably, the icaD gene emerges as a distinctive marker, crucial in regulating biofilm dispersion and setting these isolates apart. The captivating interplay of oxacillin, biofilm dynamics, and genetic signatures disintegrate novel dimensions in understanding MRSA's adaptive strategies and underscores the importance of the icaD gene in engineering biofilm resilience.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.