Abstract

Helicobacter pylori is the most common cause of gastric ulcers and is associated with gastric cancer. The enzyme HppA of class C nonspecific acid phosphohydrolases (NSAPs) of H. pylori plays a crucial role in the electron transport chain. Herein, we report an in silico homology model of HppA consisting of a monomeric α + β model. A high throughput structure-based virtual screening approach yielded potential inhibitors against HppA with higher binding energies. Further analyses of molecular interaction maps and protein-ligand fingerprints, followed by molecular mechanics-generalized Born surface area (MM-GBSA) end point binding energy calculations of docked complexes, resulted in the detection of top binders/ligands. Our investigations identified potential substrate-competitive small molecule inhibitors of HppA, with admissible pharmacokinetic properties. These molecules may provide a starting point for developing novel therapeutic agents against H. pylori.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.