Abstract

During the last years, several kinds of Embolic Protection Devices (EPD) have been developed, with the aim of minimizing complication caused by thrombi generated during Carotid Artery Stenting (CAS). These devices are capable of capturing small particles generated during the intervention, avoiding cerebral stroke and improving the outcomes of the surgery. However, they have associated complications, like the increase on flow resistance associated by their use or the lack of knowledge on their actual filtration efficiency for thrombi of low size. Current work proposes a validated computational methodology in order to predict the hemodynamic features and filtering efficiency of a commercial EPD. It will be observed how Computational Fluid Dynamics predicts pressure drop with fair agreement with the experimental measurements. Finally, this work analyzes the filtration efficiency and the influence of the distribution of injected particles on this parameter. The capabilities of the filter for retaining particles of diameter below the pore size is, additionally, discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.