Abstract

Background and objectivesAge-related arterial stiffening increases peripheral resistance and decreases arterial distensibility, thus contributing to hypertension, an important risk factor of atherosclerosis. It causes abnormal blood flow, endothelial dysfunction, higher pulse wave velocity, and consequently elevated pressure wave amplitude. MethodsThis paper presents the influence of these changes via multiscale 3D-0D transient computational fluid dynamics simulations of blood flow in five patient-specific geometries of human carotid bifurcation using archetypal flow waveforms for young and old subjects. ResultsThe proposed model shows a significant decrease in the time-averaged wall shear stress (TAWSS) for the old archetypal flow waveform. This is in good agreement with clinical data on a straight segment of common carotid arteries available for young and old subjects. Moreover, our study showed that the decrease of area-averaged TAWSS related to the old flow waveform is much more pronounced (2.5 ÷ 4.5 times higher) at risk areas (areas showing TAWSS below its threshold value of 0.48 Pa) than in straight segments commonly considered in clinical studies. ConclusionsSince arterial stiffness can be lowered through long-term usage of any of the five basic groups of antihypertensives, possible benefits of such medical therapy could be not only lowering blood pressure and peripheral resistance but also in increasing the TAWSS and thus attenuating an important mechanism of the atherosclerotic process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call