Abstract
Amyotrophic lateral sclerosis (ALS) is the most prevalent motor neuron disorder worldwide. In ALS, progressing disease can result from misfolding and aggregation of superoxide dismutase-1 (SOD1) or TAR DNA-binding protein 43kDa (TDP43). An efficient immunotherapy for ALS should spare intact SOD1 while eliminating its dysfunctional variant. We utilized advanced immunoinformatics to suggest a potential vaccine candidate against ALS by proposing a model of dynamic TLR4 mediation and induction of a specific Th2-biased shift against mutant SOD1, TDP43, and TRAF6, a protein that specifically interacts with dysfunctional SOD1. SOD1, TDP43, and TRAF6 were retrieved in FASTA. Immune Epitopes Database and CTLpred suggested T/B-cell epitopes from disease-specific regions of selected antigens. A TLR4-mediating adjuvant, RS01, was used. Sequences were assembled via suitable linkers. Tertiary structure of the protein was calculated. Refined protein structure and physicochemical features of the 3D structure were verified in silico. Differential immune induction was assessed via C-ImmSim. GROningen MAchine for Chemical Simulation was used to assess evolution of the docked vaccine-TLR4 complex in blood. Our protein showed high structural quality and was nonallergenic and immune inducing. Also, the vaccine-TLR4 complex stability was verified by RMSD, RMSF, gyration, and visual analyses of the molecular dynamic trajectory. Contact residues in the vaccine-TLR4 complex showed favorable binding energies. Immune stimulation analyses of the proposed candidate demonstrated a sustained memory cell response and a strong adaptive immune reaction. We proposed a potential vaccine candidate against ALS and verified its physicochemical and immune inducing features. Future studies should assess this vaccine in animal studies.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.