Abstract

Hexokinase 2 (HK2) binds to Voltage-Dependent Anion Channel 1 (VDAC1) on mitochondrial outer membrane (MOM) to facilitate a preferential access of ATP to HK2 for glycolysis, in order to maintain a constant energy source for cell proliferation in cancer especially. While previous studies have discovered that the VDAC1 N-terminal helix is responsible for regulating molecules from within mitochondria to cytoplasm, the molecular mechanism of how HK2 is able to regulate the ATP access remains elusive. We hereby propose a model for the HK2-VDAC1 association. The model is then subjected to molecular dynamics (MD) simulations, where we probe the effect of HK2 binding on the mobility of the VDAC1 N-terminal helix. Results from the simulations show that HK2 binding restricts the movement of the VDAC1 N-terminal helix. As a result, VDAC1 is kept in the open state most of the time and probably allows a constant supply of ATP to HK2 for glycolysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.