Abstract

The voltage-dependent anion channel (VDAC) is themajor protein in the outer mitochondrial membrane, where it mediates transport of ATP and ADP. Changes in its permeability, induced by voltage or apoptosis-related proteins, have been implicated in apoptotic pathways. The three-dimensional structure of VDAC has recently been determined asa 19-stranded β-barrel with an in-lying N-terminal helix. However, its gating mechanism is still unclear. Using solid-state NMR spectroscopy, molecular dynamics simulations, and electrophysiology, we show that deletion of the rigid N-terminal helix sharply increases overall motion in VDAC's β-barrel, resulting in elliptic, semicollapsed barrel shapes. These states quantitatively reproduce conductance and selectivity of the closed VDAC conformation. Mutation of the N-terminal helix leads to a phenotype intermediate to the open and closed states. These data suggest that the N-terminal helix controls entry into elliptic β-barrel states which underlie VDAC closure. Our results also indicate that β-barrel channels are intrinsically flexible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call