Abstract

Breast cancer is the most prevalent type of malignancies among women worldwide and is associated with serious physical and mental consequences. Current chemotherapies may lack successful outcomes; thus, the development of targeted recombinant immunotoxins is plausible. The predicted B cell and T cell epitopes of arazyme of the fusion protein are able to elicit immune response. The results of codon adaptation tool of herceptin-arazyme have improved from 0.4 to 1. The in silico immune simulation results showed significant response for immune cells. In conclusion, our findings show that the known multi-epitope fusion protein may activate humoral and cellular immune responses and maybe a possible candidate for breast cancer treatment. In this study, the selected monoclonal antibody constituting herceptin and the bacterial metalloprotease, arazyme, was used with different peptide linkers to design a novel fusion protein to predict different B cell and T cell epitopes by the means of the relevant databases. Modeler 10.1 and I-TASSER online server were used to predict and validate the 3D structure and then docked to HER2-receptor using HADDOCK2.4 web server. The molecular dynamics (MD) simulations of the arazyme-linker-herceptin-HER2 complex were performed by GROMACS 2019.6 software. The sequence of arazyme-herceptin was optimized for the expression in prokaryotic host using online servers and cloned into pET-28a plasmid. The recombinant pET28a was transferred into the Escherichia coli BL21DE3. Expression and binding affinity of arazyme-herceptin and arazyme to human breast cancer cell lines (SK-BR-3/HER2 + and MDA-MB-468/HER2 -) were validated by the SDS-PAGE and cell‑ELISA, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.