Abstract

Zinc is an essential micronutrient that plays an important role as a co-factor to several proteins, including zinc-responsive transcription factors. Trichomonas vaginalis is able to survive in the presence of high zinc concentrations in the male urogenital tract. Several genes in T. vaginalis have been shown to respond to changes in zinc concentrations, however, the zinc-dependent mechanism remains undetermined. Recently, we identified in T. vaginalis the zinc finger protein, TvZNF1, which is an ortholog of the mammal metal transcription factor (MTF1). We searched for several of the zinc-responsive genes in T. vaginalis to determine whether if they contain metal response elements (MRE), cis-acting DNA elements that specifically bind MTF1. Six highly conserved over-represented sequence motifs (TvMREs), which share similarity with other eukaryotic MREs, were identified in the zinc-responsive genes in T. vaginalis. We also demonstrated that some of the TvMREs assemble as divalent complexes either as two closely spaced TvMREs or as two overlapping TvMREs forming a palindromic-like sequence: TGCC(N3)GGCA. Electrophoretic mobility shift assays were used to detect the zinc-dependent binding of TvZNF1 and nuclear proteins from T. vaginalis to this specific palindromic motif. Our results support a novel mechanism used by T. vaginalis for the transcriptional regulation of associated zinc-responsive genes through a MTF1/MRE-like system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.