Abstract
We investigate tailoring cannula implantation angles of left ventricle assist devices (LVAD) to reduce cerebral embolism risk for full LVAD support. We resolve pulsatile hemodynamics with a multi-scale computational fluid dynamics model coupled to a Lagrangian scheme tracking 2-5 mm particles for three cannula implantations. Blood is modeled as non-Newtonian. Cerebral flow distribution is altered depending on anastomosis angle and comparison of means embolization rates between steady and unsteady flow models show that unsteady modeling is more accurate even in the full LVAD support case. Intermediate angle implantation yields lowest cerebral embolization incidence of 11% vs 29% for normal and 36% for shallow implantation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Biomechanics and Biomedical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.