Abstract

Rotary left ventricular assist devices (LVADs) are commonly operated at a constant speed, attenuating blood flow pulsatility. Speed modulation of rotary LVADs has been demonstrated to improve vascular pulsatility and pump washout. The effect of LVAD speed modulation on intraventricular flow dynamics is not well understood, which may have an influence on thromboembolic events. This study aimed to numerically evaluate intraventricular flow characteristics with a speed modulated LVAD. A severely dilated anatomical left ventricle was supported by a HeartWare HVAD in a three-dimensional multiscale computational fluid dynamics model. Three LVAD operating scenarios were evaluated: constant speed and sinusoidal co- and counter-pulsation. In all operating scenarios, the mean pump speed was set to restore the cardiac output to 5.0L/min. Co- and counter-pulsation was speed modulated with an amplitude of 750rpm. The risk of thrombosis was evaluated based on blood residence time, ventricular washout, kinetic energy densities, and a pulsatility index map. Blood residence time for co-pulsation was on average 1.8 and 3.7% lower than constant speed and counter-pulsation mode, respectively. After introducing fresh blood to displace preexisting blood for 10 cardiac cycles, co-pulsation had 1.5% less old blood in comparison to counter-pulsation. Apical energy densities were 84 and 27% higher for co-pulsation in comparison to counter-pulsation and constant speed mode, respectively. Co-pulsation had an increased pulsatility index around the left ventricular outflow tract and mid-ventricle. Improved flow dynamics with co-pulsation was caused by increased E-wave velocities which minimized blood stasis. In the studied scenario and from the perspective of intraventricular flow dynamics, co-pulsation of rotary LVADs could minimize the risk of intraventricular thrombosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call