Abstract

Based upon a hybrid ferromagnet/semiconductor structure consisting of two-dimensional electron gas and a pair of surface ferromagnetic stripes on top, we have theoretically investigated the effect of in-plane stray field omitted frequently in previous studies on the spin-dependent ballistic transport properties in hybrid structure. It is demonstrated here that, in combination with an external-controllable electrostatic modulation, the concerned structure shows a similar function as a lateral spin-polarized resonant tunneling device, where the strong spin-filtering effect occurs and nearly single-mode polarization is anticipated for the proper modulation. More importantly, the spin polarity of transmission electron can be easily transferred from one extreme to the other by switching the magnetization of stripes, showing the promising application as an efficient spin aligner in the developing semiconductor spintronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call