Abstract

To develop an in-plane simultaneous multisegment (IP-SMS) imaging technique using a 2D-RF pulse and to demonstrate its ability to achieve high spatial resolution in EPI while reducing image distortion. The proposed IP-SMS technique takes advantage of periodic replicates of the excitation profile of a 2D-RF pulse to simultaneously excite multiple segments within a slice. These segments were acquired over a reduced FOV and separated using a joint GRAPPA reconstruction by leveraging virtual coils that combined the physical coil sensitivity and 2D-RF pulse spatial response. Two excitations were used with complementary spatial response profiles to adequately cover a full FOV, producing a full-FOV image that had the benefits of reduced FOV with high spatial resolution and reduced distortion. The IP-SMS technique was implemented in a diffusion-weighted single-shot EPI sequence. Experimental demonstrations were performed on a phantom and healthy human brain. In the phantom experiment, IP-SMS enabled a four-fold acceleration using an eight-channel coil without causing residual aliasing artifacts. In the human brain experiment, diffusion-weighted images with high in-plane resolution (1 × 1 mm2 ) and substantially reduced image distortion were obtained in all imaging planes in comparison with a commercial diffusion-weighted EPI sequence. The capability of IP-SMS for contiguous whole-brain coverage was also demonstrated. The proposed IP-SMS technique can realize the benefits of reduced-FOV imaging while achieving a full-FOV coverage with good image quality and time efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.