Abstract

The p-n junction is one of the most important basic structures in the semiconductor field, with vast applications in photodetectors, transistors, light emitting diodes, and solar cells. Here, an new in-plane intramolecular WSe2 p-n junction is realized, in which the n-type region and p-type region are chemically doped by polyethyleneimine and electrically doped by the back-gate, respectively. An ideal factor of 1.66 is achieved, proving the high quality of the p-n junction realized by this method. As a photovoltaic detector, the device possesses a responsivity of 80 mAW-1 (≈20% external quantum efficiency), a specific detectivity of over 1011 Jones and fast response features (200 μs rising time and 16 μs falling time) at zero bias, simultaneously. Moreover, a large open-circuit voltage of 0.38 V and an external power conversion efficiency of ≈1.4% realized by the device also promises its potential in microcell applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.